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Abstract

Hepatitis C virus (HCV) infection is a global public health problem. The implementation of public 

health interventions (PHI) to control HCV infection could effectively interrupt HCV transmission. 

PHI targeting high-risk populations, e.g., people who inject drugs (PWID), are the most efficient 

but there is a lack of tools for prioritizing individuals within a high-risk community. Here, we 

present Intelligent Network DisRuption Analysis (INDRA), a targeted strategy for efficient 

interruption of hepatitis C transmissions. Using a large HCV transmission network among PWID 

in Indiana as an example, we compare effectiveness of random and targeted strategies in reducing 

the rate of HCV transmission in two settings: (1) long-established and (2) rapidly spreading 

infections (outbreak). Identification of high centrality for the network nodes co-infected with HIV 

or >1 HCV subtype indicates that the network structure properly represents the underlying 

contacts among PWID relevant to the transmission of these infections. Changes in the network’s 

global efficiency (GE) were used as a measure of the PHI effects. In setting 1, simulation 

experiments showed that a 50% GE reduction can be achieved by removing 11.2 times less nodes 

using targeted vs random strategies. A greater effect of targeted strategies on GE was consistently 

observed when networks were simulated: (1) with a varying degree of errors in node sampling and 

link assignment, and (2) at different levels of transmission reduction at affected nodes. In 

simulations considering a 10% removal of infected nodes, targeted strategies were ~2.8 times more 

effective than random in reducing incidence. Peer-education intervention (PEI) was modeled as a 

probabilistic distribution of actionable knowledge of safe injection practices from the affected 

node to adjacent nodes in the network. Addition of PEI to the models resulted in a 2–3 times 

greater reduction in incidence than from direct PHI alone. In setting 2, however, random direct 

PHI were ~3.2 times more effective in reducing incidence at the simulated conditions. 

Nevertheless, addition of PEI resulted in a ~1.7-fold greater efficiency of targeted PHI. In 

conclusion, targeted PHI facilitated by INDRA outperforms random strategies in decreasing 

circulation of long-established infections. Network-based PEI may amplify effects of PHI on 

incidence reduction in both settings.
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1. Introduction

Hepatitis C virus (HCV) infects nearly 2.8% of the world’s population and is a major cause 

of liver disease worldwide (Mohd Hanafiah et al., 2013). HCV infection is an important US 

public health problem, being the most common chronic blood-borne infection and the 

leading cause for liver transplantation (Alter, 2007; Stanaway et al., 2016). Since 2007, HCV 

surpassed HIV as a cause of death in the US and HCV associated mortality exceeds that 

from 60 other nationally notifiable infectious conditions combined (Ly et al., 2012). It is 

estimated that 0.9% of people in the US have viraemic infections (HCV RNA positive) 

(Polaris Observatory, 2017) and that more than 15,000 die each year from HCV-related 

disease, with mortality expected to rise in the coming years (Ward, 2013). Approximately 

80% of persons who become infected with HCV develop chronic hepatitis and are at risk for 

advanced liver disease; 15%-30% of these persons have progression to liver fibrosis and 

cirrhosis and up to 5% will die from liver failure due to cirrhosis or hepatocellular carcinoma 

(Alter, 2007). The HCV epidemic is ongoing in the US and globally. Incidence rates remain 

high, especially among young people who inject drugs (PWID) in predominantly suburban 

and rural areas (Page et al., 2009; Page et al., 2013).

Viral hepatitis is a leading cause of death and disability worldwide (Stanaway et al., 2016). 

Recent availability of highly efficacious direct-acting antivirals (DAA) for treatment of 

hepatitis C offers a new opportunity for controlling HCV infections and eliminating hepatitis 

C as a public health threat worldwide (WHO, 2016) and in the US (The National Academies 

of Sciences, 2017). However, there are several research gaps, including investigation of 

social networks at risk of acquisition and dissemination of HCV infection, which prevent 

development of optimal and cost-effective public health interventions for interruption of 

HCV transmission among high-risk population groups.

People-who-inject-drugs (PWID) are at a significant risk of HCV infection and are major 

contributors to HCV incidence. Many PWID communities have >40% prevalence of HCV 

infection and are high priority for treatment (Martin et al., 2013). Although historically 

viewed as being difficult to treat, PWID have been recently shown to have treatment 

adherence and SVR rates comparable to non-drug users (Elsherif et al., 2017) as well as a 

low re-infection rate (1.14 per 100 person-years)(Islam et al., 2017), indicating equally 

effective applicability of DAA therapy to this high-risk population. Several public health 

interventions (PHI) are currently available for effectively controlling HCV infections among 

PWID if coverage is sufficient; namely, specific DAA therapy and harm reduction programs, 

including syringe service programs, medication substitution treatment and peer-education 

interventions (PEI) (Bruggmann and Grebely, 2015; Platt et al., 2016). Although each of the 

interventions can contribute to reduction of incidence and prevalence of HCV infection 

among PWID, significant cost, complex logistics and social factors confound application of 

the interventions, indicating need for the development of efficient implementation strategies 

to eliminate hepatitis C in these communities.

Approaches targeting high-risk populations are efficient but not applicable to differentiate 

among members of the community where all members share the same risk factor. However, 
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the structure of such high-risk communities is not uniform; community members contribute 

differentially to dissemination of infection and, therefore, to force of infection, with a few 

members having many connections relevant to transmission of infections in the community 

and many members having only few such connections. Targeting interventions to the most 

contributing members intuitively seems to be the most efficient way to interrupt disease 

dissemination within the community. Indeed, among PWID, transmissions usually occur 

through preferential contacts, resulting in contact networks that are not randomly organized 

but are modular and have a skewed degree distribution (Latora et al., 2006; Leigh Brown et 

al., 2011; Villandre et al., 2016; Wertheim et al., 2014). However, the structure of contact or 

transmission networks is not always available and can be identified only through intense 

research, which prevents common application of the networks to public health interventions 

(PHI). Several strategies, like an acquaintance approach, were developed to approximate 

such networks without completely mapping its structure for HCV simulation studies 

(Hellard et al., 2014) and implementation of PHI in rural villages in Uganda (Chami et al., 

2017). The lack of effective strategies to direct PHI hinders the development of precision 

public health, the strategy of using data to guide interventions that benefit populations most 

efficiently (Arnett and Claas, 2016; Bayer and Galea, 2015; Khoury et al., 2016).

Here, we take advantage of a complex HCV transmission network, which was recently 

identified among PWID in Indiana (Conrad et al., 2015; Peters et al., 2016; Ramachandran 

et al., 2016) using the Global Hepatitis Outbreak and Surveillance Technology (GHOST) 

(Campo et al., 2015; Longmire et al., 2017; Rytsareva et al., 2017), to devise and evaluate a 

new targeted, network-based strategy for reducing circulation and dissemination of HCV 

infection in 2 epidemiological settings: (1) long-established HCV infection as was observed 

in a PWID community during investigation in Indiana (Peters et al., 2016) and (2) a 

hypothetical rapid spread of a single HCV strain as observed during an outbreak.

2. Material and methods

2.1. Transmission Network

The Indiana State Department of Health recorded a cluster of 11 HIV infections in a small 

rural community in Scott County, which led to detection of 181 HIV-positive patients from 

November 2014 to November 2015 linked to injection use of oxymorphone (Conrad et al., 

2015; Peters et al., 2016; Ramachandran et al., 2016). Serological and molecular analyses 

showed that 92.3% of the HIV patients were co-infected with many HCV strains, which 

belonged to three genotypes(Ramachandran et al., 2016). Genetic analyses further revealed a 

long-standing and continued HCV transmission within this affected community, and a dense 

and dynamic network of HCV transmission among PWID that enabled an explosive HIV 

transmission. Please refer to (Peters et al., 2016; Ramachandran et al., 2016; Ramachandran 

et al., 2018) for complete demographic and clinical data.

Intra-host HCV HVR1 variants were sampled from 281 persons using next-generation 

sequencing. GHOST (Campo et al., 2015; Longmire et al., 2017; Rytsareva et al., 2017) was 

used to genetically characterize HCV strains and detect a transmission network. GHOST 

generates networks where 2 nodes representing infected individuals are linked by 

transmission if the minimal Hamming distance between any pair of HCV HVR1 sequences 
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obtained from these individuals is below a relatedness threshold of 3.77% (Campo et al., 

2015). We used this HCV transmission network (ITN) as a case study (Fig. 2A). In ITN, 

23.5% of nodes are HIV co-infected and 34.5% are infected with >1 HCV subtype 

(Ramachandran et al., 2016).

In this paper, we compare effectiveness of random and targeted strategies in reducing the 

rate of HCV transmission in two epidemiological settings: (1) long-established infection 

with many HCV strains as was observed in a PWID community during investigation in 

Indiana (Peters et al., 2016; Ramachandran et al., 2016) and (2) a hypothetical rapid spread 

of a single HCV strain as observed during an outbreak.

2.2. Global efficiency (GE)

GE is a measure of how efficiently information can be exchanged in a network that can also 

be used to determine cost-effective structures in weighted and unweighted networks (Latora 

and Marchiori, 2001). GE, is calculated as:

GE = 2
n(n − 1) ∑

i < j

1
d(i, j)

Where n is the number of nodes and d(i, j) is the path distance between nodes i and j. For an 

example, see figure 1A. Here, GE was used to evaluate efficacy of intervention on a 

network.

2.3. Network disruption

Contribution of individual nodes to GE was calculated as change in GE of a network before 

and after a node (x) experienced a transmission reduction (d) modeled as modification of 

link weights (0%< d≤100%, with d=100% indicating a complete node removal):

GE changex, d = 1 − New GE
Original GE

For the random-based strategy, the nodes were selected at random until all nodes were 

affected. This procedure was repeated 10,000 times, and the global efficiency change was 

averaged over all runs.

For the network-based strategy, nodes were selected according their network importance, 

using different measures of centrality such as degree, closeness, betweenness and Eigen 

vector centrality (Newman, 2010). A fifth measure was devised that we call Glocal 

efficiency, a greedy measure where the node which would cause the highest GE change was 

identified and removed, a procedure that is repeated iteratively in the remaining network 

until all nodes have been removed. Finally a removal rank is calculated for each node.

To compare different strategies, we used HR50 (Harm Reduction 50%), which is calculated 

as the number of nodes to be disrupted for 50% reduction in GE.
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2.4. Robustness of network to error

Considering that actual transmission networks can be (1) incompletely sampled (missing 

nodes) and (2) modeled with inaccurate links among nodes, we explored contribution of 

both these errors on GE estimates using 1000 simulated networks. The observed network is 

used for choosing the target nodes, but its effect on GE is measured over the simulated 

network. Two types of simulated networks were built in the following way:

i. For the first type of error (links), observed networks were simulated by rewiring 

links among nodes; e.g. links A-B and C-D were reassigned as A-D and B-C. 

This procedure continued until the required fraction of links has been rewired. 

The total number of nodes, links and degree distribution remain constant in all 

rewiring experiments.

ii. For the second type of error (missing nodes), we first calculate the edge 

probability that any two nodes are linked in the original network. Then we create 

a new node and check it against every other node in the network, creating a link 

with a probability equal to the original edge probability. We continue until the 

required fraction of nodes has been added.

2.5. Incidence reduction

To study the effect of disruption strategies on reducing incidence, we devised the following 

in silico sampling experiment:

i. Exclude a fraction of nodes (test set) from the original network, the remaining 

nodes compose the sampled network;

ii. On the sampled network, disrupt a fraction of nodes, either with the random- or 

network-based strategy. The nodes that were not disrupted are labelled as 

infected;

iii. For each node in the test set, count the number of infection links, defined as links 

to infected nodes in the original network;

iv. Calculate incidence reduction, IR = 1 − c
t , where t is the number of nodes in the 

test set and c is the number of test nodes that have ≥1 paths to any infected node;

v. Steps i to iv are repeated 1000 times and an average is calculated over all runs.

To study the effect of PEI on incidence reduction, the procedure described above was 

repeated, with the difference that each neighboring node of the disrupted node has a 

probability of being disrupted itself. This probability was set to 0.76 according to (Garfein et 

al., 2007), who showed a 76% decline in overall injection risk 6 months after PEI.

2.6. Agent-based simulation

We performed an agent-based simulation of a single HCV strain spread across a network of 

susceptible individuals as observed during a hypothetical outbreak (setting 2). The ITN 

major component (n=130) (Fig. 2B) was used in simulations. All links were considered to be 

bi-directional. Thousand repetitions starting from a randomly defined node were performed. 
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We used the following estimates: (a) each individual uses drugs on average 11 times per 

week (Scott et al., 2015); (2) a probability of transmission from an infected node to a single 

linked susceptible node is 0.05 per a drug use incident (Wicker et al., 2008); and (3) after 

180 days, an infected node has a probability of 0.25 of clearing infection but may become 

infected again with the same probability of a naïve node (Micallef et al., 2006).

3. Results

3.1. ITN features

Distribution of links in ITN is different from a random network constructed using same 

number of nodes and links (Fig. 3A). ITN contains many nodes with few links and a few 

nodes with many links.

In ITN, 23.5% of nodes are HIV co-infected and 34.5% are infected with >1 HCV subtype 

(Ramachandran et al., 2016). The HIV co-infected nodes have significantly greater degree 

(Mann Whitney test, p = 0.047), closeness (p = 0.032) and Eigen-vector centrality (p=0.021) 

than nodes without HIV (Fig. 3B). Likewise, nodes with multiple HCV subtypes have a 

significantly greater degree (p = 0.001), closeness (p = 0.001) and Eigen-vector centrality 

(p=0.001) than nodes with a single subtype (Fig. 3C). In ITN, Eigen-vector and degree 

centralities have a modest correlation (r = 0.5568); among the 20 top nodes with high-degree 

centrality, only 8 are in the top 20 nodes with high Eigen-vector centrality. Both measures 

showed different patterns between nodes co-infected with HIV and infected with >1 HCV 

subtype, indicating differences in ITN exploration by HCV and HIV.

3.2. Random vs network-based disruption

Fig. 4 shows effects of the random vs network-based node removal on ITN GE. All targeted 

strategies based on using different centrality measures for disrupting networks have a 

significant effect on GE, with removal of only ~10% of all nodes resulting in ~90% 

reduction in GE. HR50 for the random removal (n=55.7, 19.82% of all nodes) is 11.2 times 

greater than HR50 for the targeted removal (n=5, 1.78% of all nodes). Figure 2B shows the 

major component of the ITN, with nodes in red belonging to the GE50 group: when 

removed, the GE of the network drops to 44.8%.

3.3. Robustness to errors

Observed networks may not accurately represent actual networks, owing to incorrect link 

assignments (error 1) and under-sampling resulting in missing nodes (error 2). Such 

misrepresentation may change the network structure to such an extent that interventions 

designed using a sampled network would not be equally efficient for the actual network. We 

simulated networks with different levels of these two error types and used these networks to 

measure the ratio between HR50 for targeted and random strategies. As expected, the 

performance of the network-based approach decreases when the error increases for both 

error types, especially for error type 2. However, the advantage of network-based over 

random is quite robust to both types of error, as can be seen by the ratio of the network-

based HR50 to random-based HR50 being >1 up to very high levels of error (Fig. 5).
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3.4. Partial transmission reduction

ITN used in this study involves PWID. Therefore, a node removed from ITN (e.g., Fig. 1C) 

indicates that the corresponding person stopped participating in HCV transmissions, for 

example, by completely adopting safe injection practices. However, such scenario is not 

always achievable and persons affected by interventions may continue unsafe injections but 

at a reduced rate. The last scenario is shown in Fig. 1B depicting a network, where a 2-fold 

increase in weight of links results in the 50% decline in the rate of transmission involving 

the affected node. To investigate the effect of the incomplete transmission reduction of the 

nodes affected by interventions based on targeted or random strategies, we simulated 

interventions under different levels of transmission reduction (Fig. 6A and B).

The simulation experiments show that the random exclusion of a small set of nodes (e.g. 

10%) results in a very limited effect on GE, with an average of 5.77% GE reduction over all 

levels of transmission reduction (ranging from 0.13% to 10.63%). The targeted exclusion of 

the same number of nodes yields an average of 43.15% GE reduction over all levels of 

transmission reduction (ranging from 3.90% to 88.69. Both random and targeted strategies 

become very similar in terms of GE reduction when transmission reduction is ≤30%. In 

general, analyses show that a higher transmission reduction is associated with a greater 

improvement in efficacy of targeted interventions (Fig. 6C). A modest 35% reduction in the 

level of transmission yields a 3.3-fold greater HR50 for the random vs targeted strategy, 

demonstrating a much greater efficacy of a network-based approach, especially when only 

limited resources are available for PHI. Please note that all subsequent analyses are 

performed assuming a total transmission reduction (100%).

3.5. Effect on incidence in setting 1

The results so far indicate superiority of targeted over random interventions in reduction of 

the network GE, which can be interpreted as a reduction in circulation of infection within 

the network remaining after exclusion of nodes. Intuitively, it suggests that the remaining 

HCV strains cannot be as efficiently transmitted among members of the residual network. 

However, this effect does not measure directly the contribution of the GE reduction to 

incidence or the rate of new infections among naïve members of the community because, 

until now, we considered a transmission network where all nodes were infected. To study the 

effect of targeted and random strategies on incidence in the epidemiological setting 1 (long-

standing infection), we devised an in silico sampling experiment, in which 90% of nodes 

from ITN (n=252) were randomly sampled to represent infected individuals, with the 

remaining 10% being considered naïve and used as a test set (n=29). Among infected nodes, 

10% were removed, assuming the 100% transmission reduction, using random or targeted 

approaches. The immediate reduction in incidence was calculated as a fraction on test nodes 

that have lost direct links to the infected part of the network because of the node removal 

procedure. After averaging the data from 100 trials, the targeted approach was found to 

result in the 18.65% incidence reduction, which is a 2.8–fold improvement over the random 

approach (Fig. 7A). When a similar experiment was conducted using only nodes (n=130) 

from the major component of ITN (Fig. 2), the targeted approach was shown to be 1.8 times 

more efficient in reducing the immediate incidence than the random approach (Fig. 7B). 

Both approaches performed 2–3 times more efficiently in the major component than in the 
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entire ITN, suggesting a greater effect of targeted interventions on incidence reduction in 

tightly linked transmission networks that are usually found in high-risk populations.

3.6. PEI and incidence in setting 1

PEI may spread actionable knowledge of safe injection practices among members of PWID 

community. To model additional effects of PEI on incidence, the experiments described 

above were repeated to include a probability of disrupting nodes neighboring to a node 

affected by PHI+PEI. Under these conditions, the random PHI+PEI applied to the entire ITN 

yielded a 24.04% incidence reduction, which is 3.6-times greater than a random PHI alone 

(Fig. 7A). The targeted PHI+PEI, however, resulted in the 52.47% incidence reduction, 

which is 2.2-times greater than reduction achieved by the random PHI+PEI, 8-times greater 

than by a random PHI alone and 2.8-times greater than by a targeted PHI alone (Fig. 7A). 

The incidence reduction of both strategies is greater when applied to the major ITN 

component (Fig. 7B), with the targeted PHI+PEI resulting in the 88.41% incidence 

reduction.

Modeling of random and targeted PHI and PHI+PEI directly affecting 10% of infected 

nodes at different levels of the network infection, from 5% – 95% of all ITN nodes, showed 

a much greater effect of targeted strategies on the immediate incidence reduction in overall 

(Fig. 7C). While PHI alone has a stable effect on incidence at almost all levels of ITN 

infection in both strategies, PHI+PEI has a greater effect on the incidence reduction with the 

increase of a fraction of infected nodes. This observation indicates the important 

contribution of PEI in stopping dissemination of infections in high-risk communities where 

actionable knowledge of safe practices, as related to infections, can be efficiently spread 

among members of a contact network.

3.7. PHI and PEI in setting 2

All aforementioned analyses were conducted using the epidemiological setting (setting 1) 

found in Indiana during investigation of HCV infection among PWID. This PWID 

community was infected for several years with many HCV strains of different genotypes and 

subtypes (Peters et al., 2016; Ramachandran et al., 2016). To model an outbreak setting 

(setting 2), which is characterized by a rapid spread of a single viral strain across a contact 

network, we performed an agent-based simulation using the major connected ITN 

component containing 130 nodes. At each repetition of simulation (n=1000), the simulated 

spread was stopped when 90% of the nodes were infected, after which we calculated the 

effect of disruption strategies (random or targeted) on reducing incidence among the 

remaining 10% of nodes. In contrast to setting 1, these simulations showed that random 

direct PHI were ~3.2 times more effective in reducing incidence. However, addition of PEI 

resulted in a ~1.7-fold greater efficiency of targeted PHI (Fig. 8).

4. Discussion

The effective control of HCV infections depends on availability of powerful strategies to 

interrupt HCV transmission. HCV spread among high-risk populations such as PWID and 

men-who-have-sex-with-men (MSM) is facilitated by tight contact networks (Rolls et al., 
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2013), which can be modeled as transmission networks identified using genetic approaches 

(Wertheim et al., 2017). However, transmission networks are not frequently available to 

guide PHI, prompting the use of other approaches like an acquaintance network (Chami et 

al., 2017; Hellard et al., 2014) to estimate indirectly the underlying contact network 

structure. Availability of transmission networks enables the development of targeted 

strategies for elimination of HCV infections in high-risk communities. ITN used in this 

study (Ramachandran et al., 2016) was generated by GHOST, a new computational and 

molecular technology for automatic detection of HCV transmission networks from next-

generation sequence data (Campo et al., 2015; Longmire et al., 2017). Here, we used this 

network for the development and evaluation of targeted approaches for preventing 

prevention of new HCV infections in two epidemiological settings: (1) long-established 

infection with many HCV strains as was observed in a PWID community during 

investigation in Indiana and (2) a hypothetical rapid spread of a single HCV strain as 

observed during an outbreak.

4.1. High centrality nodes

Identification of a high centrality for the network nodes co-infected with HIV or >1 HCV 

subtype indicates that the ITN topology properly represents the underlying contact network 

in this community and is suitable for modeling of PHI strategies The observation of more 

frequent HIV infections among nodes with high centrality is consistent with the recent 

introduction of HIV to this community in Indiana (Conrad et al., 2015; Peters et al., 2016; 

Ramachandran et al., 2016). As only a fraction of nodes has been infected with HIV, more 

central nodes have a higher probability of getting infected. This is in agreement with 

theoretical studies that showed that high Eigen-vector centrality nodes tend to be visited 

more often by agents that move randomly over a network (Rocha and Masuda, 2014). In 

contrast to HIV, nodes co-infected with >1 HCV subtype have a greater degree than Eigen-

vector centrality when compared with mono-infected nodes. The Indiana PWID community 

was infected with many HCV strains (Peters et al., 2016; Ramachandran et al., 2016). Thus, 

it is conceivable that members of the high-eigenvector centrality part of the network were 

frequently exposed to different HCV strains. It has been reported that HCV re-infection 

clears more frequently than initial HCV infections (Sacks-Davis et al., 2013). Based on these 

results, (Sacks-Davis et al., 2013) suggested the existence of, at least partial, immunity 

against subsequent infections with a different HCV strain. Thus, nodes in the high Eigen-

vector centrality space could accumulate some immunity, which may reduce presentation of 

HCV co-infections despite frequent opportunities for transmission. This process may be 

further facilitated by competition among HCV strains co-infecting a single individual, 

resulting in infection with one dominant strain (Laskus et al., 2001a; Laskus et al., 2001b; 

Ramirez et al., 2010). However, peripheral high-degree nodes outside of the high Eigen-

vector centrality space may experience less frequent infections, resulting in lower immunity 

against HCV and in a more frequent presentation of HCV co-infections in these nodes. Such 

distinction between nodes is seemingly concordant with a long-term HCV infection in the 

community. These observations further suggest the interesting possibility that measures of 

network centrality may be used to aid in the discrimination of recent vs long-term 

introductions of infections in high-risk communities.
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4.2. Advantages and disadvantages of GE

We explored several global network measures for guiding and monitoring the PHI 

implementation before choosing GE, which measures efficiency of information exchange 

across a network (Latora and Marchiori, 2001). GE has been used in many applications of 

network science (Crucitti et al., 2006; Latora and Marchiori, 2001; Latora and Marchiori, 

2005; Tieri et al., 2005) and when compared with other topological measures has several 

important advantages for the objectives of this study:

i. It is applicable to weighted or unweighted networks. Contact frequency usually 

varies among members of community, which results in variable weights 

associated with different links in the transmission network. Here, we used this 

GE property in experiments simulating a different degree of transmission 

reduction upon the PHI application in the setting where affected nodes, for 

example, do not adhere completely to safe injection practices.

ii. It is applicable to connected or disconnected networks. Owing to incomplete 

sampling or significant modularity of contact networks, transmission networks 

identified among persons at high-risk of infection are frequently organized into 

several components and unlinked nodes (Wertheim et al., 2017; Wertheim et al., 

2014), similar to the ITN used in this study (Fig. 2). Such topological structure 

complicates agent-based simulations of viral transmission, as it is difficult to 

ascertain the transmission “jump” probability among components.

iii. The network structure solely defines GE. Thus, GE can be readily used for 

comparing different networks and provides a new effective measure for 

monitoring progress of PHI implementations.

GE was used in this study as a measure of the network capacity to sustain HCV infection. In 

simulation experiments, PHI was modeled as a node removal from ITN. Targeted strategies 

should be especially efficient on networks having a skewed degree distribution because of a 

differential contribution of nodes to force of infection, with a few highly linked nodes 

spreading infection to many adjacent nodes and many peripheral nodes infecting one or only 

few nodes (Latora et al., 2006; Leigh Brown et al., 2011; Villandre et al., 2016; Wertheim et 

al., 2014). Thus, high-degree nodes will be removed only with low probability at random, 

which will have a little effect on reduction of force infection, while targeting high-degree 

nodes will have a significant impact on force of infection. Indeed, our simulation 

experiments showed that elimination of only 1.78% of all nodes (n=5) by a targeted 

intervention reduces GE by more than 50%, while a similar effect on GE will require 

removal of 19.82% of all nodes (n=56) by a random intervention. Targeted removal of 40% 

of nodes completely disables the network capacity to support HCV circulation (Fig. 4).

Although GE is directly associated with the rate of dissemination of messages across a 

network or, in epidemiological terms, with force of infection, its greatest disadvantage is that 

it is a purely topological measure. In dynamic settings, the importance of GE may greatly 

depend on many factors beyond the known network topology such as duration of the 

outbreak and rates of exposure, transmission, and the network growth, which can be 

assessed through epidemiological observations. If we consider a very high prevalence of 
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infection among PWID (Degenhardt et al., 2017) in setting 1 of well-established infection 

and assume an equal rate of exposure at each link between members of the network, GE can 

be used to accurately approximate force of infection on a network. Decline in GE indicates 

reduction in a network capacity to support a rapid spread of infections. Although such 

decline may not have a strong effect on the overall infection prevalence beyond removal of 

the targeted few nodes, nevertheless, targeting may have a strong effect on force of infection 

on the network or on capacity to infect new members of the community. On a random 

network, force of infection is evenly distributed among infected nodes, while on a network 

with a skewed degree distribution, high-centrality nodes have a much greater contribution to 

force of infection than peripheral nodes. Contribution of a node to GE is the most direct 

measure of its contribution to force of infection and, thus, to the potential of establishing 

new infections or incidence, which is one of the most important measures of effectiveness of 

public health interventions to curb infection in the targeted community.

GE defines more accurately the rate of transmission of new infections in high-risk 

communities than a simple count of currently infected cases. Intuitively, a 90% GE reduction 

suggests that spread of new infections, for example, HIV among HCV infected PWID, 

across the entire network will be 10 times more difficult than in the unreduced network. This 

reduction can be achieved by removal of fewer nodes using targeted vs random strategies, 

indicating non-uniform distribution of capacity to cause new infections among members of 

high-risk communities. To evaluate this capacity, we conducted simulation experiments to 

measure incidence. Difference in the number of uninfected nodes losing their direct 

connection to infected nodes after the targeted or random node removal was used to measure 

the incidence reduction resulted from PHI. In each simulation experiment, infected nodes 

were randomly assigned and comprised 5%-95% of ITN. Again, the targeted strategies were 

found to be ~2.8 times more effective than random in reducing the number of new infections 

in communities with 10%-95% prevalence of infection.

4.3. Caveats of a targeted approach

If resources permit, all nodes in the transmission network must be treated. However, 

application of targeted PHI allows for achieving a significant reduction in incidence using 

limited resources or faster infection elimination using sufficient resources. Thus, targeted 

PHI benefits the treated community by rapidly reducing opportunity for efficient 

transmission of new infections, like HIV to HCV infected PWID or HCV to naïve members 

of the community.

Significant dependence of targeted strategies on the network structure indicates that the 

effective PHI implementation may be affected by accuracy of the network estimation. 

Simulation experiments conducted here to evaluate the contribution of errors related to node 

sampling and link assignments showed a consistently greater effect of targeted over random 

strategies on GE at almost all levels of errors. The difference between both strategies 

becomes undetectable when errors exceed 80%. This observation indicates that targeted 

strategies applied to inaccurately or incompletely estimated networks never perform less 

efficiently than random; however, their efficiency may decline to approximate the effect of 

random strategies when the network topology is identified with a very low accuracy.
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Another factor that may have a significant effect on success of PHI and may diminish 

contribution of targeted vs random strategies is incomplete reduction of transmission at the 

level of individual nodes in the network, which may be caused by, for example, poor 

adherence to safe injection practices among members of PWID community. Indeed, 

transmission reduction at the level of <30% results in both strategies being inefficient in 

controlling HCV infections (Fig. 6). Nevertheless, the targeted node removal outperforms 

the random strategy at all levels of transmission reduction above 35% (Fig. 6C). Removal of 

a small set of nodes at random results in a very limited, if any, effect on GE even at the 

100% transmission reduction, while the targeted removal of the same number of nodes may 

have a profound effect on GE. These observations indicate that PHI with significant 

limitations in resources, which do not allow to access >10% of the community, may be very 

ineffective when applied at random. Also, ineffective PHI implementation, which does not 

produce a >35% transmission reduction among affected individuals, may result in an almost 

undetectable effect on GE and infection dissemination.

It is important to note that ITN did not contain information on directionality. However, 

many, if not all, edges in ITN are likely bidirectional. Although previous studies have found 

that highly connected nodes did not necessarily have a high number of outgoing edges 

(Bartlett et al., 2017)in outbreak settings, ITN does not reflect a rapid spread of HCV in the 

community (as observed during an outbreak) but rather is a result of a long-going epidemic. 

Although directionality must be extremely important and likely fixed when a new strain is 

introduced and spreads across a network within a short period of time, in the case of a well-

established epidemic lasting for years, directionality of each edge is not necessarily constant. 

It is difficult to expect for transmission directionality to be accurately assessed or even to be 

of significance for each HCV strain circulating in the community if we consider: (i) a long 

standing of HCV infection, which suggests that all members of the community may 

participate in HCV transmission as both sources and recipients, (ii) a potential for 

differential acquisition of partial immunity depending on position in the network, (iii) a 

dynamic competition among co-infecting HCV strains (Laskus et al., 2001a; Laskus et al., 

2001b; Ramirez et al., 2010), (iv) a variation in the exposure rates at different edges, and (v) 

a low probability of complete sampling of all members of transmission chains.

4.4. PEI

PEI applied at the level of PWID communities through randomly selected peer-educators 

was shown to be efficient, with 76% of PWID having continued to follow safe injection 

practices at least for 6 months after PEI (Garfein et al., 2007; Mackesy-Amiti et al., 2013). 

Given that this does not necessarily equate with a 76% effectiveness at preventing HCV 

transmission, this value was considered here solely as an upper bound estimate. Within 

communities, in difference to other PHI, PEI appears to act as “infection” that transmits with 

some probability from the affected node to adjacent nodes in the network, spreading, for 

example, actionable knowledge of safe injection practices among members of a PWID 

community. Therefore, we may assume that nodes with many links in the transmission 

network have a strong effect on dissemination of such actionable messages, owing to the 

substantial standing of the corresponding individuals in the community (e.g., greater 

financial resources to purchase drugs or seniority in social relationships, etc.)(De et al., 
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2007). Accordingly, knowledge and adoption of safe practices preventing transmission of 

infections by these individuals should be more readily accepted by their contacts. In our 

study, addition of PEI resulted in a 2–3 times greater reduction in incidence than from PHI 

alone, with the reduction reaching 88.4% on the tightly linked major component of ITN. 

These observations from simulation experiments show that PEI implemented using nodes 

maximally contributing to GE, and thus taking into consideration the topological structure of 

transmission networks, greatly amplifies effects of PHI on incidence reduction. To our 

knowledge, this is the first application of quantitative models to study PEI effects on 

incidence using actual transmission networks.

4.5. Different effect of targeted intervention in the two settings

Considering a significant HCV prevalence among PWID (Degenhardt et al., 2017), the 

epidemiological setting 1 of well-established HCV infection should be frequently observed 

among PWID communities. Indeed, the recent investigation in Indiana showed infection of a 

large rural PWID community with many HCV strains of different genotypes(Peters et al., 

2016; Ramachandran et al., 2016), indicating a long-term standing of the infection and 

numerous introductions of different strains over time. However, this investigation was 

prompted by outbreak of HIV infection, which shares the same mode of transmission with 

HCV, indicating another setting of a rapid spread of infection with a single strain across the 

PWID contact network(Campbell et al., 2017; Peters et al., 2016). Here, we modeled both 

settings. Setting 1 of the well-established HCV infection is relatively stable. It was modeled 

using random sampling of infected nodes, assuming that the remaining nodes represent 

recent new members of the network. Setting 2 is very dynamic. The rapid growth of the 

network of infected nodes was modeled using agent-based simulations. Taking into 

consideration a dynamic nature of this setting and a short duration of the process, the 

remaining uninfected nodes were assumed to represent peripheral members of the network. 

Application of targeted PHI has different outcomes in these two settings. In difference to 

setting 1, targeted PHI were found to be less efficient than random in setting 2, although 

addition of PEI is equally beneficial in both settings. These findings are in concert with other 

studies on modeling PHI in outbreak settings (Bartlett et al., 2017; Zelenev et al., 2018). The 

difference can be explained by topological features of uninfected nodes. In setting 1, which 

is expected to be of some duration, uninfected nodes join the network by a preferential 

attachment, linking to the existing nodes with a probability proportional to their degree 

(Latora et al., 2006; Leigh Brown et al., 2011; Villandre et al., 2016; Wertheim et al., 2014). 

Thus, removal of high-centrality nodes results in a greater effect on attachment of new 

nodes, significantly reducing probability of the newly joining members to become infected. 

However, in setting 2, which is rapid, modeling of the network exploration as dispersion 

results in a very high probability of infection of high-centrality nodes and their immediate 

neighbors, leaving uninfected mainly peripheral nodes that have edges to low-degree nodes. 

In this case, the targeted removal of high-centrality nodes should have a very limited effect 

on separation of uninfected nodes from the network than removal of nodes at random.

It should be noted that effect of PHI on GE reduction can be accurately estimated only on 

the entire contact network, which frequently remains unknown. Lack of such knowledge 

limits application of agent-based or any other approaches to modeling effects of 

Campo and Khudyakov Page 13

Infect Genet Evol. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



interventions. Genetic analyses applied to dynamic outbreak settings likely do not expose 

the entire network of contacts relevant to the infection dissemination because the process of 

infection in the affected community is not complete. In addition, accuracy of simulations in 

dynamic settings may greatly depend on many factors beyond the known network topology 

such as duration of the outbreak and rates of exposure, transmission, and the network 

growth, which can be assessed through epidemiological observations. Development of 

effective PHI in dynamic settings of outbreaks is complex and warrants further research.

4.6. INDRA: a potential tool for public health institutions

INDRA is a versatile method that provides a clear prioritization strategy of the available PHI 

when only a transmission network has been inferred. When applied to a transmission 

network, INDRA provides a report on: (i) GE50 estimate; (ii) a probability to achieve a 

similar reduction in GE by a random removal of the same number of nodes; and (iii) a rank 

of network nodes by their contribution to GE, suggesting targeting PHI towards the high-

ranked nodes to maximize incidence reduction. Although INDRA can analyze a network 

enhanced or solely created using epidemiological information, a limiting factor is the 

availability and accuracy of such data for network construction. Genetic data are more 

objective than personal recollections of contacts for inferring transmission networks. A low 

cost and broad availability of next-generation sequencing coupled with bioinformatics tools 

freely available to users (Longmire et al., 2017) make genetic analyses for the detection of 

transmission networks accessible and provide real opportunities for field applications of 

INDRA. Nevertheless, epidemiological variables such as an estimated size of community, 

duration of drug use, drug itself, rate of injection as well as gender, age, and ethnicity of 

network members are very useful for accurate assessment of network topology and 

application of specific PHI and PEI. Application of genetic networks adjusted using these 

variables should further improve effectiveness of INDRA.

5. Conclusions

In high-risk communities, transmission networks may significantly facilitate HCV 

elimination efforts. In setting of a long-established infection in the community, targeted 

strategies based on maximizing the GE reduction of the transmission networks are most 

efficient in controlling HCV infections, indicating a differential contribution of infected 

members of the community to force of infection. GE is an effective measure for guiding and 

monitoring PHI in this setting. Targeted PHI facilitated by INDRA outperforms random 

strategies in decreasing circulation of long-established infections. However, targeted PHI in 

the dynamic outbreak setting are less efficient than random, suggesting a significant 

dependence on completeness of the known network and/or additional factors beyond the 

network topology. Nevertheless, network-based PEI may amplify effects of PHI on 

incidence reduction in both settings.
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Figure 1. 
GE of networks. A) All possible links are present and equal, GE = 1.0; B) All possible links 

are present but some links are weaker (distance between nodes = 2), GE = 0.75; C) One 

node is disconnected, GE = 0.5.
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Figure 2. 
A) ITN. Each node corresponds to one HCV-infected individual and two nodes have an edge 

if they share HCV strain (linkage by transmission). B) Major component of the ITN, with 

nodes in red belonging to the GE50 group (if removed, the efficiency drops to 44.8%).
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Figure 3. 
ITN features. A) Degree distribution. The dashed line shows the degree distribution of the 

Erdos-Renyi network of the same number of nodes, links and edge probability; B) Node 

centrality and its HIV status; C) Node centrality and its coinfection with >1 HCV subtype.
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Figure 4. 
Effect of targeted vs. random intervention on the ITN GE. X axis shows the percent of nodes 

removed from ITN according to the targeted or random strategies. Y axis shows the percent 

of remaining GE of ITN after node exclusions. Each line represents results of 

implementation of random or targeted strategies. Targeted strategies were based on various 

network centrality measures for removal of nodes.
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Figure 5. 
Robustness of targeted interventions to errors in estimating the network structure. Error 1 – 

inaccurate assignment of links among nodes. Error 2 – incomplete sampling of nodes. X axis 

shows the percent of erroneous links (error 1) or nodes (error 2) in simulated networks; Y 

axis shows the ratio of the targeted HR50 over the random-based HR50. The observed 

network is used for choosing the target nodes, but its effect on GE is measured over the 

simulated network.
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Figure 6. 
Effect of partial transmission reduction. A) GE after a random intervention with different 

combinations of transmission reduction and population affected, from 0 to 100 in increments 

of 5%. Side bar shows the GE scale. B) GE after a targeted intervention. C) Ratio of the 

random to targeted HR50.
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Figure 7. 
Immediate incidence reduction by random and targeted PHI and PHI+PEI with the in silico 
sampling experiment. A) 90% of the ITN nodes infected; 10% of infected node disrupted by 

direct interventions; B) 90% of the major ITN component infected; 10% of infected nodes 

disrupted by direct interventions. C) Incidence reduction with different levels of infected 

ITN nodes (sampled network percentage); 10% of infected nodes disrupted by direct 

interventions. Contribution of PEI to overall disruption varies based on the network topology 

around a node affected by direct interventions.
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Figure 8. 
Incidence reduction by random and targeted PHI and PHI+PEI with an agent-based 

simulation of HCV spreading in a susceptible network. 90% of the major ITN component 

infected; 10% of infected nodes disrupted by direct interventions.
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